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The variable metric (VM) method is used to optimize molecular geometry in 
electronically excited states. A general expression for the first derivative of 
energy in the particular excited state is derived, considering configuration 
interaction of all singly excited configurations. A special expression for the 
excited states energy derivative is given for calculations with semiempirical 
methods of CNDO type. The geometry optimizations of a set of molecules 
in various excited states have been carried out by the CNDO/2 method. The 
results of computations have been discussed and compared with the available 
experimental data. A good agreement of the calculated geometries with the 
experimental ones has been shown in the first excited states and a relatively good 
agreement in the higher states, with some exceptions. Some special features 
of the proposed method are discussed. 
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1. Introduction 

The success of variable metric methods [1-4], introduced into quantum chemistry 
by several authors [5-8] for optimizing molecular geometry, stimulated the interest 
to extend the method to geometry optimization also in an arbitrary electronically 
excited state. Panci~ [7] optimized the molecular geometry in the first excited state 
using half-electron approximation [9] in the framework of CNDO/2 method. We 
have shown [10, 11] that the CNDO/2 method, in the original (Pople's) version 
[12, 13], may be successfully used to study molecular geometry in electronically 
excited states in a sufficiently large range of molecular types when configuration 
interaction is included. Gordon et al. [14, 15] have found optimal geometries of 
several alkanes and some other molecules in different excited states from INDO 
energy hyper-surfaces, using the method of Powell [16] (no use of derivatives). 
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In this communication, we report the results of our attempt to use the quadratically 
convergent optimization method for calculating molecular geometries of closed- 
shell systems in various excited states. 

2. Theory 

In order to derive the energy expression of the particular electronically excited state 
v and multiplicity n (1 or 3) we use the interaction wave function 

~lFv = ~ Av,ik ~(I)ik (1) 
i k  

where A~,~ are the expansion coefficients, belonging to the transitions i--> k and 
~(I)~k are the corresponding singlet or triplet functions of Slater determinants. 

The elements of the H '  matrix constructed from the functions ~(P~k, may be written 
in the form [t7] 

H;k,j~ = (Eo + ek - e~)3~j3k~ + 2(iI lglk]~3l ,  - ( i k[g l l j )  (2) 

where E0 is the Hartree-Fock energy expression of the ground state and (iklgl(/> 
and (il]g[kj~ are the Coulomb and exchange integrals, respectively, formed from 
the molecular orbitals ~b~, r etc. For the sake of simplicity we assume that the 

MO's are real. Then (iklglq7 = fr162 and 3's are Kron- 
ecker 8's. 

The total electronic energy of the excited state v of multiplicity n may then be 
written in the form 

"E,  = A ~  H ' A ,  (3) 

= Eo + A~+HA, (3a) 

where H is the matrix with the elements H~k,jz = H~'~,jz - E03~y~k~ and Av is the vth 
eigenvector. 

When we express the ~b~ as the expansions of the basis functions in matrix formula- 
tion 

~b, = e~+ff (4) 

with the usual meaning of the notation, ~ we may write 

( i k lg l l j )  = ei ~ | c~(d~ | d,]gl+ + | ,~,+)c~ | cj (5) 

where | denotes the direct product [18]. Therefore c~ + | c~ and c~ | cj are the 
row and column vectors, respectively, of the dimension N 2, when N is the number 
of basis functions. (~ | +lg[+ + | ~+) = G" is the N 2 • N 2 square Hermitean 
matrix z of two electron integrals, over the basis functions. Similarly it may be 
expressed ( i l lg[kj) .  

1 In the MOLCAO theory [3] the form of the expansion ~e~ is used, i.e. qb and c~ are row 
and column vectors, respectively. We use the equivalent form (4) for the purpose of the further 
procedure. 
2 In this symbol of the matrix the column row ordering of the vectors indicates in what 
manner the elements have to be formed using the matrix multiplication rule. 
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Then it may be written 

2(illglkj)31,~ - ( i k l g l l j )  = 2c~ | c?GBck | c~3~,~ -- e~ | e~GBcz | cj 

= {2c? |  | c?3~.- e? |  |  § 

(6) 

The brackets [] + indicate the factors which have to be multiplied and, after the 
multiplication has been carried out, the resulting row vectors have to be transposed. 
Further, we substitute e k by 

ek = c~ Fck (7) 

and similarly e~. The Fock matrix Fis  built up from the basis functions and ck is the 
kth eigenvector. Then we realize that 

ek - ~ = e~ Fck -- c? Fc~ 

= (c~[c~ - e ; [ c : ) F l  + (8) 

where again the brackets [] + have the same meaning as those mentioned above, we 
get the expression for the energy gradient component with respect to the coordinate 
qx in the following form 

~qx - eqx + A~* H &  

- Oqx + A +  HD H a  ~q~ FI + ~q~ 6'"1 + ~q~ H a c"1 A. (9) 

In (9) H D (diagonal) and H a are the supermatrices of the same order as H with the 
elements 

+ + H g  = c~ [ ~  - c? [c? 

G c + r c  + H~k,jz = 2c~ | z t ~ | c [  31~ - c( ~ | c+[c~ |  (9a) 

and their multiplication by the factors, which are matrices, has to be understood as 
the multiplication of each element of the respective supermatrix by these factors 
(directly). The form of the gradient component in (9) is convenient since the parts 
containing variation parameters are separated from the parts containing integrals. 
The supermatrix H "  composed of the Fock matrix eigenvectors may be kept con- 
stant in the first derivative of energy [5, 19, 20] because Oe/Oc = 0. The supermatrix 
H a, also composed of the eigenvectors of the same matrix, must be differentiated. 
The matrix F, besides the integrals, contains the density matrix D. Due to the re- 
quirement that D must be idempotent [5], D in F must also be differentiated. The 
same holds for the derivative of the ground state energy E0 which as the explicit 
formula is given in [5]. Obviously, in this formula the derivative of the F matrix is 
also included. Another form of ~Eo/Oq~ is given in [21, 22]. 

It may be assumed that the expression (9) will be useful in some minimization 
problems in excited states although only singly excited configurations in the CI 
wave function are included. This is established by some ab initio calculations of 
molecular geometry in electronically excited states in which only singly excited con- 
figurations also are used [23, 24]. 



256 J. Le~ka et al. 

3. Method of Calculation 

We use all singly excited configurations in a CI treatment. With respect to the ZDO 
approximation, the two-electron integrals in the CI matrix may be written in the 
explicit form 

= _- ~A ~AB (10) <iklgllj> ~ c,,c,,ckvejW,~ C,,C,,C~Cj~'AA + c,,e,,ce~c,~A, 

where 7'.~, 7'Aa and ~'AB have the well-known meaning of repulsion integrals [12], the 
superscripts A and AB on the sums denote one- and two-atomic parts and c~. . . . .  
are the respective components of the Fock matrix eigenvectors. 

We substitute the orbital energies e~, e~ which occur in the diagonal elements of the 
CI matrix, by the expressions 

(t~ # v) 

We use the Fock matrix elements F, , ,  F,~ according to Pople [13]. Then, introducing 
the expressions (10) and (11) into the CI matrix (3) we get the first derivative of 
energy "Ev. in the framework of the CNDO type methods, in the following form: 

O"E~ OEo 

i~,j l  

(it r v) 

( 0S.~ 1 p,~ 8~jS~z 
�9 B~ eqx 2 OqxlJ 

A. -N2q } + ~ [(2CiuCkuCl~Cjv)31,~ -- C~uCjuCk~Clv] OyaB �9 (12) 

The notation of the quantities in (12) is well known and is given in the cited paper 
[12]. The term OEo/Oq,~ in the CNDO type approximation was published by Panci~ 
[7]. The prime over E0 means the total energy of the molecule, i.e. the sum of the 
electronic and repulsion energy of  the cores. The terms (O"E~/Oc). (Oc/Oqx) are very 
small and therefore neglected in (12). 

We used the CNDO/2 method with standard parametrization [13] and we calcu- 
lated the derivatives of ~,,~ integrals from the integral expansions used in the same 
method. We took over the overlap integrals as well as their derivatives from McIver 
and Komornicki [25]. The convergence of SCF calculations was ensured by the 
procedure of Flurry [26]. 

The optimization procedure is based on iteration steps in which the coordinate 
vector q is changed according to the formula 

q~ = q~_~ - ~Hc]g~_~ (13) 
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where c~ is a scalar so chosen that the term E(q~-l~Hj_lg~_l) is minimal, H is the 
Hessian matrix and g the energy gradient vector. The inverse H -  1 was calculated 
according to the formula [3]. 

I-I, -1  = H~-~ + @ + ~  - r + z  - ~:+~, + +z)/(c~ - c2) 

p = q~ - q~-~, Z = (H,Z~)+y, c~ = y+p, c2 = y+z (14) 

Y = g~ - gi-1 

starting from the unit matrix. Further, the matrix was successively formed as the 
calculation proceeded. To follow the way to the energy minimum we used the 
simplified technique, without double iteration [6], choosing c~ = 1, and this value 
was only diminished when the energy increased (the overstep). For the other 
parameters [4, 27] the values e = 10 -6, 0 = 10 -a, 7' = 10.8 were used. 

The whole procedure consists of the following successive steps: 1) Full SCF calcu- 
lation on the imposed molecular geometry of the respective species and configura- 
tion interaction treatment, including all singly excited configurations, 2) calculation 
of the gradient vector for the chosen state v and multiplicity n, 3) calculation of the 
Hessian matrix inverse, 4) calculation of the new coordinates. The process is then 
repeated until the gradient vector components decrease below the accuracy stated, 
or until the bond lengths (in A) do not change on the third decimal place. Therefore, 
the accuracy of the calculated bond lengths introduced in Table 1 is + 0.0005 A 
and in the cases of a worse convergence in the vicinity of the limit, otherwise seldom 
in our calculations (e.g. formaldehyde) about + 0.005 A. The limit fbr the gradient 
norm value was 0.001 (in a.u.); after this value had been achieved the calculation 
was stopped. 

Before we discuss our experiences with the proposed method and the special features 
of VM calculation in the range of excited states, we have to mention some signifi- 
cant properties of our gradient. According to the Walsh rules [28] the strain in a 
molecule, caused by electronic excitation, is relaxed by the change of symmetry. 
As a consequence of this fact the potential energy hypersurface will be changed 
during this relaxation process. Therefore, our gradient in VM calculation leads to 
the excited species which possess the geometry belonging to a symmetry group 
different from that of the ground state. However, this property is not general and 
in some cases the symmetry is conserved, which is dependent on the properties of 
the energy hypersurface in the particular state. 

4. Results and Discussion 

In order to verify the suitability of the proposed optimization method, we chose a 
set of species (Table 1) which represent different structural types of small molecules. 
We performed tile geometry optimizations in the first and second excited singlet 
states and some calculations concerning the higher singlet and the lowest triplet 
states. The initial geometries were always either those of the ground state, or any 
which sufficiently differed from the expected ones. The results have then been 
compared with the experimental ones [29]. Unfortunately, there is a very small 
amount of experimental data for the higher excited states and for triplet states. 
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Regarding the results concerning the first singlet states of all species studied (Table 
1), the geometry parameters agree quite well with the experimental data measured 
by Herzberg et al. [29]. The differences in the bond lengths are in the second decimal 
places. Acceptable values were obtained also for the valence angles. The differences 
from the experimental values amount to several degrees. Comparing the calculated 
and experimental adiabatic excitation energies, introduced in Table 1, it is seen that 
the differences between them amount to about 10-25~ related to the experimental 
ones (most of them amount to about 20~). Besides these values, we give in Table 1 
the corresponding emission vertical energies, i.e. the differences between the excited 
states energy minima and the corresponding Franck-Condon ground states. 
Namely, these values are very close to the experimental adiabatic excitation energies 
and the differences amount to about 2-10~ with respect to the latter (except car- 
benes and the triplet states). We think that in spite of the different physical meaning 
of these two quantities, the emission vertical energies would be a good measure of 
the experimental adiabatic values and the calculation by this method would 
represent a manner of providing the right adiabatic values. 

The geometry of the ammonia molecule in the first excited state is of the symmetry 
D3h, i.e. planar. We obtained two forms of the same symmetry D3h whether we 
started from the planar form or from the pyramidal ground state geometry. These 
two forms differ only very slightly in energy and in the bond lengths. In general 
it is a special feature of the method that, also in the higher states, there are several 
local minima which differ slightly in energy, and in most cases the starting geometry 
has been shown to be decisive for this phenomenon 3. It would be a consequence of 
the approximative character of the CNDO/2 method, but we assume that it corre- 
sponds to several transitions of a lower probability, by which the most probable 
transition is always accompanied. We calculated also the methane molecule. This 
molecule is isoelectronic with ammonia and therefore we could expect it would be 
planar at least in the first excited state. However, there is no experimental evidence 
for the existence of the planar form. Herzberg did not determine the geometry in the 
excited state since the band in the far ultraviolet is too broad, the transitions are of 
Rydberg type and moreover above the lowest dissociation limit [29]. The more 
recent measurements by Sandorfy et al. [31] show the allowed band at 9.705 eV and 
by Koch and Skibowski [32] two bands at 9.6 and 10.4 eV. Barring this, the calcu- 
lations [33] indicate the only moderate partition of Rydberg states in the first 
excited state of  methane. In calculations on the semiempirical level by RCNDO 
method in which Rydberg orbitals are included, Salahub and Sandorfy [33] con- 
sidered the vertical transitions in the methane molecule and obtained for the first 
allowed bands the energies 9.49 and 12.88 eV, respectively. Montagnani et al. [34] 
obtained for these transitions by ab initio calculations the values 9.73 and 10.7 eV. 
Hoffmann [35] assumes the planar form as the most stable in the first excited state. 
Gordon et aI. [14] calculated some optimal forms of methane in several excited 
states and they did not consider the planar form. The result of our calculation is 

3 We only assume that all these stationary points are relative minima. We did not examine in 
more detail their actual nature. 



Variable Metric Optimization 265 

also here very interesting. When we started from the planar form of the symmetry 
D4h we obtained the optimized form of  the same symmetry. But starting from the 
tetrahedral form, we obtained the "umbre l la"  form of the C3v symmetry. The 
emission vertical energy of the latter form is 10.22 eV, which is close to both the 
already mentioned measured and calculated vertical excitation energies of methane. 
This resemblance is striking even when we realize the different physical meaning of 
the two quantities. We optimized HCN using three initial geometries. Thus starting 
from Ca symmetry with the angle ~ H C N  = 140 ~ we obtained the form of  the same 
symmetry and an excellent agreement with the experimental data. However, starting 
from the geometry with ~ H C N  = 110 ~ there results the form with nearly the same 
bond angle but with different bond lengths and especially with the lower energy of 
about 0.5 eV. When we started from the C~v symmetry we obtained the species of 
the same symmetry but with a higher energy about 1 eV. Here the symmetry was 
conserved. For HNO we obtained practically the same geometry, whether we 
started from the ground state or from any different geometry with the changed 
valence angle. The calculation of  formaldehyde in the first excited singlet state 
conserves the symmetry. Therefore, the bent form which is lower in energy had to 
be used as the starting one. Our calculated emission vertical energy of 3.41 is again 
quite close to the experimental adiabatic [29] value of 3.49 and also, obviously as a 
special case, to the exactly calculated [36] vertical value of 3.43 eV. The bending 
angle calculated by us is larger by 6 ~ while the INDO value [14] is smaller by 10 ~ 
than the experimental one [29]. In acetylene the symmetry is also conserved and 
thus the three possible geometries have been taken as initial ones. The C2~ form 
arises as the most stable, while the C~h form for which experimental data are avail- 
able, is higher in the total energy but with the lower excitation energy. The differ- 
ences between the calculated values and experimental ones are acceptable. The 
highest in energy is the linear form. The calculated geometry of carbene in the first 
excited singlet state 1B1 agrees quite well with the experimental one. The CO2 
molecule is bent in the first excited state. Since the symmetry is conserved in this 
case, we optimized separately the bent and linear forms. The calculated geometry 
of the bent form agrees quite well with the experimental one. However, we must 
note that the separation between the hypersurfaces of both bent and linear forms is 
very small in the surroundings of equilibrium geometry and consequently the con- 
vergence of VM calculation is not quite good in this region. Therefore, the accuracy 
of the bond length is only 0.01 A. The linear form is higher in energy, but near the 
limit the energy difference becomes small. Also the bond length difference of  the 
two forms is small. 

We can state that the Walsh rules hold in all calculated molecules. All the other 
geometries of  the species which are not in agreement with Walsh rules are higher in 
energy. Also the characters of the state agree quite well with the experimental ones 
although the experimental characters of the state include the Rydberg states. 

For  the higher excited states there are experimental data only for ammonia, cyano- 
hydrogen and partially for acetylene. Thus Herzberg [29] gives the whole geometry 
for the second excited state of ammonia and only symmetries for the third, fourth 
and fifth excited states. It should be noted that our results for the second excited 
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state do not agree with the experimental ones. For ammonia we obtained two planar 
forms of the symmetry C2~ with a small difference in energy but with quite different 
bond lengths. Again, the form resulting from the pyramidal initial geometry is 
higher in energy. Consequently also the character of state disagrees. On the other 
hand for the third excited state we obtained the form of the symmetry Dab which 
agrees with the Herzberg statement. However, for the fourth and fifth states we 
obtained planar forms but with the symmetries C~ even when we started from Dab 
form. This again disagrees with the experimental Da~ symmetry. For the second 
excited state of HCN, we obtained quite good agreement with the experimental 
bond lengths, the angle of the bent form is greater by ca. 14 ~ than the experimental 
one. For the second state, we obtained two further forms. One of these differs only 
slightly from the optimal one. The second, starting from the linear form, results 
as the linear. In these cases the symmetry was again conserved. There are partial 
experimental data also for the third excited state of HCN [29]. The calculated CH 
bond length and valence angle differ slightly from the experimental ones (lack of 
experimental CN bond length). However, there is another form with a lower energy, 
but linear, although we started from the bent form also in this case. For the fourth 
excited state of HCN only the experimental excitation energy is available. There is a 
large difference between this value and the calculated emission vertical energy. 
However, since the comparison of the geometry data is not possible and the fourth 
state has the same character as the third, we assume that the observed energy may 
be assigned to one of the local minima of the third state, the calculated energy 
value of which is close to the experimental one. Also for the second excited state 
of acetylene only the experimental excitation energy is given. In this case, our 
emission energy is again close to the experimental adiabatic one. In the first excited 
triplet state, we only calculated carbene, formaldehyde and difluorocarbene. 
However, the carbene first excited triplet arises by the CNDO/2 method degener- 
ated with the first excited singlet. Therefore we used the INDO method for which 
the gradient is the same. By INDO the first excited triplet is lower than the singlet 
ground state, with the bent structure and character aB1, which is in agreement with 
the observations [37-40] and exact calculations [41-42]. For g H C N  and Rca we 
obtained 140.6 ~ and 1.098 ~ which is close to the observed [37-39, 43] 136 + 5 ~ 
1.05/~ and calculated [41, 42, 44] values. However, also by the INDO method we 
get the first excited triplet aB~ degenerated with the excited singlet XB~. Similarly, 
by the CNDO/2 method we get the first excited triplet of dittuorocarbene degener- 
ated with the first excited singlet ~B~. The calculated data for the triplet state of 
formaldehyde are quite satisfactory, the CO bond length agrees quite well with the 
experimental one (experimental CH bond lengths are not given). The deviation 
angle of the CO group from the plane is by 15 ~ greater than the measured one. 

We also carried out some calculations in the highest singlet excited states in order 
to prove the convergence of the method. Thus in ammonia we calculated the ninth 
state and at the cyanohydrogen the twentieth. We can state that the convergence of 
the method also in these states was relatively good and the equilibrium geometry 
was achieved. However, the value of the gradient norm was of the order 10-1 even 
when the bond lengths were already stabilized to the third decimal places. Obviously, 
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this is due to a more  complicated form of  the energy hypersurface in the higher states 
and its sharper curvature in the surroundings o f  the equilibrium geometry. 

It  seems to be necessary to discuss still some general features o f  the full geometry 
optimization procedure.  Originally in our  procedure we used the integrals o f  
Roo thaan  [45, 46] and their derivatives used in the procedure o f  Pancff" [7]. How-  
ever, we must  state that, in spite o f  our  good experience with the Panci~ program 
D E R I V A L ,  which we used for optimizations o f  ground state geometries and con- 
formations,  the Roo thaan  integrals and their derivatives used in his program, have 
been shown as not  suitable for optimization o f  excited state geometries. With these 
integrals, we did not  obtain correct bond lengths (e.g. in acetylene 1.15 A). Only 
when we used the expansions o f  the integrals used in the original Pople's version o f  
the C N D O / 2  method,  which are slightly modified by fitting on bond lengths (option 
for cut-off o f  the series), we obtained the agreement with the experimental bond  
lengths. The program was written in F O R T R A N  IV language and the calculations 
were performed by the computer  Siemens 4004. 

We also use a similar procedure as in the present paper, suitable for open shells, 
for  geometry optimization o f  radicals in excited states. The work is now in a state 
o f  elaboration. 
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